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Results are presented of an exper imental  investigation of hea t  transfer 

between a surface and a moist f luidized bed. The test data  have  been 

reduced by means of cr i ter ial  relations. 

Since a m a t e r i a l  of low thermal  s tabi l i ty  cannot be 
dr ied  in a fluidized bed with a h igh- tempera tu re  drying 
agent, the output of d r i e r s  with a fluidized bed for 
such ma te r i a l s  is low. 
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Fig. 1. Schematic of the apparatus  : 1) a i r  blower; 
2) diaphragm; 3) different ia l  manometer ;  4) el 'ec- 
t r i c  heater ;  5) cyclone; 6) different ia l  m i c r o m a -  
nometer ;  7 ) t e s t  apparatus ;  8) heat t r ans fe r  
tube; 9) psychromete r ;  10) voltage s tab i l i ze r ;  11) 
Dewar flask; 12) thermocouple  switch; 13) R-330 
potent iometer ;  (14) wat tmeter ;  15) potent iometr ic  
r eco rde r ;  SC--s tandard  cell ;  B--bat tery;  G- -ga l -  

vanometer .  

Inc rease  of d r i e r  output while re ta ining a low initial 
te.mperature of the drying agent may be achieved by 
supplying addit ional  heat through heat t r ans fe r  surfaces  
located in the bed [1-3].  Additional heat supply during 
drying of MSN copolymer  permi t ted  the d r i e r  output to 
be inc reased  by a factor  of 2-2 .5  [3]. 

During drying with addit ional heat  supply, an in-  
c r e a s e  in the intensi ty of heat t r ans fe r  between the 
surface  and the bed has been noted [2, 3]. It is t he re -  
fore  of in te res t  to c a r r y  out a sys temat ic  investigation 
of heat t r ans f e r  between a surface  and a f luidized bed 
during the drying p rocess .  

The exper imenta l  investigations were  conducted in 
an appara tus  (Fig. 1) in which the heat t r ans fe r  s u r -  
face was a copper  tube of d i ame te r  26 mm and length 
176 mm, located in the fluidized bed of a d r i e r  and 
with a sp i r a l  ntchrome heater  inside it. The hot junc-  
tions of a di f ferent ia l  ten-channel  thermocouple were  

embedded in five equally d is t r ibuted  slots  on the s u r -  
face of the tube. For  e l ec t r i ca l  insulation the the rmo-  
couple junctions were  sheathed in f iberg las ,  p r e s s e d  
into the s lots  in the tube, and covered  by a copper 
cyl inder  of wall thickness 1 mm. To avoid a i r  c i r cu l a -  
tion in the slots,  the i r  ends were sea led  with epoxy 
res in .  The cold junctions of the thermocouples  were  
fastened to a holder  and d is t r ibuted  in the bed. The 
heating element  was held in a f rame with the aid of 
sharp ly  pointed sc rews  [5]. 

The investigations of heat t r ans f e r  between the 
sur face  and the flutdized bed during the drying p rocess  
was conducted in the unsteady regime.  This allowed 
investigation of heat t r ans f e r  under conditions of con- 
stant and decreas ing  ra tes  of drying, and for a d ry  bed. 

Drying curves  and curves of variat ion of bed t em-  
pe ra tu re  a re  requi red  to descr ibe  an unsteady drying 
p rocess .  When construct ing drying curves  we requi re  
to know the variat ion of mois tu re  content of the ma te -  
r i a l  in the bed during the ent i re  exper iment .  

The mois tu re  content of the m a t e r i a l  was calcula ted 
from the r e s i s t ance  of the bed, using the initial  weight 
and humidity of the bed, according to a method de- 
sc r ibed  in [4]. The bed re s i s t ance  was measu red  by 
an inclined different ia l  manometer ,  permi t t ing  ca lcu-  
lation of mois tu re  content to an accuracy  of 0.3%. The 
a i r  humidity at the bed outlet was measu red  d i rec t ly  
above the bed by means of a p sychromete r  with wet 
and d ry  suction thermocoupies .  

In o rde r  to remove the hydrodynamic c h a r a c t e r i s -  
t ics  of the fluidized bed and to construct  the the rmal  
balance, measu remen t s  were  made of the a i r  flow 
rate ,  as well as of the t empera tu re s  of the bed and of 
the a i r  at the me te r ing  diaphragm and below the d i s t r i -  
butor. Measurements  of t empera tu re  were  c a r r i e d  
out with copper-cons tantan  thermocouples  and adoub le -  
range R-330 potent iometer  of accuracy  c lass  0.015%. 
The power supplied by the e l ec t r i c  cur ren t  pass ing  
through the sp i r a l  of the tube was m e a s u r e d  by means 
of a mul t i range wa t tmete r  of accuracy  c lass  0.5%. 

The heat t r ans fe r  coefficient was calcula ted from 
the equation 

r = q / r  A t. (1) 

The amount of heat  t r a n s f e r r e d  was de te rmined  
from the cur ren t  flowing through the hea te r  of the heat 
t r ans f e r  tube, this being a l l  t r ansmi t t ed  to the bed 
through the tube sur face .  It was assumed  that the t r a n s -  
miss ion  of heat  by conduction from the tube to the 
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s uppo r t  e l e m e n t s  m a y  be neg l ec t ed  on account  of the 
me thod  of c o n s t r u c t i o n  of the tube s u p p o r t s .  T r a n s f e r  
of hea t  by  r ad i a t i on  was not taken  into account  b e c a u s e  
of the low t e m p e r a t u r e  (not above  343.2 ~ K) of the tube 
s u r f a c e .  

With the a i m  of c r e a t i n g  a cons t an t  t h e r m a l  flux, 
the h e a t e r  was fed th rough  a vol tage  s t a b i l i z e r ,  and 
c o n t r o l l e d  by  an a u t o t r a n s f o r m e r .  

The t e m p e r a t u r e  d i f f e rence  be tween the s u r f a c e  
and the bed  was d e t e r m i n e d  by the r e a d i n g s  of the 
d i f f e r e n t i a l  t he rmoeoup l e ,  with c o r r e c t i o n  fo r  the 
e m b e d d e d  depth of the hot junc t ions  of the t h e r m o -  
couple .  It was a s s u m e d  that  the t e m p e r a t u r e  of the 
f lu id ized  bed  was cons tan t  throughout  the whole volume 
above  the r eg ion  of t e m p e r a t u r e  s t a b i l i z a t i o n  of the 
incoming  gas .  The e r r o r  in ca l cu l a t i ng  hea t  t r a n s f e r  
coe f f i c i en t  d id  not exceed  2.2%. 

The t e s t s  we re  c a r r i e d  out with p a r t i c l e s  of s i l i c a -  
ge l  of va r ious  s i z e s  (see table) .  C r i t i c a l  f lu id iza t ion  
ve loc i t i e s  for  d r y  and m o i s t  p a r t i c l e s  w e r e  found in 
p r e l i m i n a r y  t e s t s ,  and the dependences  w e r e  obta ined  
of the mean  p o r o s i t y  of a bed  of d r y  and m o i s t  p a r -  
t i c l e s  on the ve loc i ty  of the a i r  p a s s i n g  through.  

The inves t iga t ions  showed that  the gas  veloci ty ,  the 
p a r t i c l e  d i a m e t e r ,  the r e l a t i v e  humid i ty  of the gas,  and 
the pos i t ion  of the tube in the bed - - i n  both t r a n s v e r s e  
and longi tud ina l  f l ow- -a l l  have an inf luence on the hea t  
t r a n s f e r  be tween  the s u r f a c e  and the f lu id ized  bed  
dur ing  the d ry ing  p r o c e s s .  No inf luence  of m o i s t u r e  
r e m o v a l  in the  bed  no r  of the spec i f i c  hea t  flux in the 
tube was  obse rved ,  within the r ange  of t h e i r  va r i a t i on  
in the e x p e r i m e n t s .  The spec i f i c  hea t  flux at  the heat  
t r a n s f e r  s u r f a c e  was v a r i e d  in the r ange  970-6800  
W / m  2. M o i s t u r e  r e m o v a l  in the bed was in the r a n g e  
9 . 9 - 7 6  k g / m 2 . h r .  

The coef f i c ien t  of hea t  t r a n s f e r  be tween  the s u r f a c e  
and the f lu id ized  bed  does  not s t ay  cons tan t  du r ing  the 

d r y i n g  p r o c e s s .  As m a y  be seen  f rom Fig .  2, it has  
i ts  g r e a t e s t  value a t  the s t a r t  of the d r y i n g  fo r  the 
m a x i m u m  r e l a t i v e  humid i ty  q~2 of the a i r ,  and r e t a i n s  
i ts  value fo r  s o m e  t ime ,  a f t e r  which it g r a d u a l l y  d e -  
c r e a s e s ,  as  ga 2 d rops ,  t oward  the value for  the d r y b e d .  

C h a r a c t e r i s t i c s  of S i l i ca  Gel F r a c t i o n s  

Equivalent Specific Saturated ] Fluidization 
diameter, weight, weight, Porosity of velocity, 

mm [ kg/cm3 kg/cm3 bed at rest m/sec 

0,670 
0.875 
1.237 
2.45 
3.50 

870 
870 
870 
870 
870 

410 
415 
425 
450 
470 

0.529 
0.523 
0.511 
0.483 
0.460 

0.140 
0,176 
0.310 
0,551 
0.770 

The l a r g e s t  e x c e s s  of the hea t  t r a n s f e r  coef f i c ien t  
a for  the m o i s t  bed o v e r  a for  the d r y  bed was in the 
r ange  1 .15 -1 .31 .  It should  be noted that  the bed t e m -  
p e r a t u r e  began to i n c r e a s e  whi le  the  d r y i n g  r a t e  was 
he ld  cons tan t .  F r o m  the t ime  of i n c r e a s e  of bed  t e m -  
p e r a t u r e ,  a d e c r e a s e  in the coe f f i c i en t  of hea t  t r a n s f e r  
be tween  the s u r f a c e  and the bed  was o b s e r v e d .  

As m a y  be s een  f rom Fig .  3, the n a t u r e  of the 
dependence  of the e x p e r i m e n t a l  va lues  of hea t  t r a n s f e r  
coe f f i c i en t  on the gas  ve loc i ty  fo r  s i l i c a  ge l  p a r t i c l e s  
of d i f f e r en t  d i a m e t e r s  is s i m i l a r  to that  fo r  a d r y  bed  
[2]. The i n c r e a s e  of the m a x i m u m  hea t  t r a n s f e r  c o e f -  
f i c ien t  fo r  a m o i s t  bed  in c o m p a r i s o n  with a d r y  bed  
is not the s a m e  for  p a r t i c l e s  of d i f f e r en t  d i a m e t e r .  The 
d i f f e r e nc e  i n c r e a s e s  as  p a r t i c l e  s i z e  d e c r e a s e s .  Thus,  
for  example ,  fo r  p a r t i c l e s  of d i a m e t e r  0.67 r r ~  the 
i n c r e a s e  is 28.4%, and for  p a r t i c l e s  of d i a m e t e r  2.45 
mm--16%. 

Other conditions being equal, the heat transfer 
coefficients for a horizontal arrangement of the heated 
tube were higher than for a vertical one. The heat 
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Fig .  2. Dependence  of the d r y  bulb t e m p e r a t u r e ,  T, ~ K 
(1), r e l a t i v e  humid i ty  of the a i r  a t  the bed  out let ,  ~2, % 
(2), hea t  t r a n s f e r  coef f ic ien t ,  aw,  W / m 2 . d e g r e e  (3), hu-  
m i d i t y  of the bed,  W, % (4), and wet  bulb  t e m p e r a t u r e ,  

t (5), on the d r y i n g  t ime ,  T, rain.  
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Fig. 3. Dependence of the coeff ic ient,  
~w, (w/m2"~ of beat transfer be- 
tween a vert ical  tube and the bed on 
the gas velocity, v, (m/sec) ,  for pa r -  
t icles of s i l ica gel of diameter:  1--3.50 
mm;  2--2.45; 3--1.237; 4--0.875; 5-- 
0.670; a)--in the f i r s t  drying period; b) 

for  the dry bed. 
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t r a n s f e r  coef f i c ien t  fo r  the h e a t e r  in a h o r i z o n t a l  p o s i -  
t ion i n c r e a s e d  with d i s t a n c e  f rom the d i s t r i b u t o r ,  as  
has  a l so  been  no ted  by o t h e r  i n v e s t i g a t o r s  [5]. The 
hea t  t r a n s f e r  coef f ic ien t  for  a v e r t i c a l  tube was  s o m e -  
what  g r e a t e r  when the h e a t e r  was pos i t i oned  on the 
bed  ax i s  than when it was at  the p e r i p h e r y .  

The r e s u l t s  of the t e s t s  to d e t e r m i n e  c~ have  been  
r e d u c e d  to e r i t e r i a l  fo rm in the shape  of the r e l a t i o n  

[ ] Nu==f Ar; ( l _ m ) ~ ,  Gu; Pr; l , (2) 

Since  the Re n u m b e r  does  not uniquely  d e s c r i b e  the 
h y d r o d y n a m i c s  of a f lu id ized  bed,  we have taken as  a 
c h a r a c t e r i s t i e  c r i t e r i o n  the group Are(1  - m) [6, 7], 
whieh m a y  be t r a n s f o r m e d ,  by r e p l a e i n g  d e by the 
d i a m e t e r  of the equ iva len t  channels ,  to the fo rm 

g "-~-r 1 ~  m YM ma 
;~Vg ( 1 - - m ) ~ A r  ( l _ m )  ~" (3) 

The inf luence of m a s s  t r a n s f e r  du r ing  the d ry ing  
p r o c e s s  on the hea t  t r a n s f e r  is taken  into account  by  
the t h e r m a l  Gukhman n u m b e r  

Ou = (T d -  r w ) / T  d �9 (4) 

The  s i m p l e x  l in (2) t akes  into account  the inf luence 
of the g e o m e t r i c a l  p a r a m e t e r s  on heat  t r a n s f e r .  

Since  a l l  the t e s t s  w e r e  c a r r i e d  out with a i r ,  the 
P r a n d t l  number ,  which in th is  c a s e  has  a cons tan t  
value,  m a y  be omi t t ed .  The f ina l  equat ion used  to 
r educe  the e x p e r i m e n t a l  h e a t  t r a n s f e r  data  has  the 
fo rm 

N u = f  Ar ; ( l__m)2 ;  Gu; I . (5) 

In the p e r i o d  of eons tan t  d ry ing  r a t e  and hea t  t r a n s -  
f e r  eoef f ic ien t ,  the a i r  l eav ing  the bed was p r a e t i e a l l y  
s a t u r a t e d .  In th is  c a s e  t h e r e  is s e l f - s i m i l a r i t y  of the 
hea t  t r a n s f e r  p r o c e s s ,  and the ~ n u m b e r  d r o p s  out 
of Eq. (5). 

Equat ions  fo r  the h o r i z o n t a l  and v e r t i c a l  a r r a n g e -  
m e n t s  of the tube in the bed  we re  obta ined  by a me thod  
of s u c c e s s i v e  in t roduc t ion  of p a r a m e t e r s .  F o r  Gu < 
< 4.10 -3 t hese  equat ions  have the fo rm:  

for  a h o r i z o n t a l  tube a r r a n g e m e n t  

[ .  trt3 ] ~ 

for  a v e r t i c a l  tube a r r a n g e m e n t  

Nu=0.268Ar~ [ [ ~ j m 3  ]~ ( I - - R ) ~ 1 7 6  

Equat ion (7) is r e p r e s e n t e d  by cu rve  1 of F ig .  4, 
f r om which it m a y  be seen  that  the e x p e r i m e n t a l  point~ 
a r e  g rouped  in a s a t i s f a c t o r y  way about the s t r a i g h t  
l ine .  The m a x i m u m  dev ia t ion  f rom the r e s u l t s  of c a l -  
cu la t ion  a c c o r d i n g  to (7) does  not exceed  10%. E q u a -  
t ions  (6) and (7) have been  ve r i f i ed  in the r a n g e s  2.07 �9 
�9 103 -< A r  _< 410.103; 0.53 _< m _< 0.83; 0.135 _< h /D  _< 
--< 0.625; 0.286 ~ r / R  -< 0.85. 

The hea t  t r a n s f e r  coef f i c ien t  du r ing  the d r y i n g  p r o -  
c e s s  d e c r e a s e s  fol lowing the p e r i o d  of the g r e a t e s t  
value,  r e a c h i n g  the value fo r  the d r y  bed  at  Cu ~ 10.9- 
�9 10 -3. The Gukhman n u m b e r  v a r i e d  in the d r y i n g  p r o -  
c e s s  in the  r ange  4.10 -3 to 40.9-10 -3. 
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Fig .  4. Heat  t r a n s f e r  be tween  the v e r t i c a l  tube 
and the m o i s t  bed  (Nu/Ar  ~ ( 1 - r / R )  ~176 = A; 
NuGu~ ~ (1 - r / R )  ~176  B; m3/(1 - m ) 2 -  = 

- C); 1) wi th  Gu < 4.10-3; 2) 4 - 1 0  -3 < Gu < 
< 10.9.10 -3. 

By the s a m e  m e t h o d  of s u c c e s s i v e  in t roduc t ion  of 
p a r a m e t e r s  we obta ined  equat ions  d e s c r i b i n g  the hea t  
t r a n s f e r  in this  p e r i o d  of the d r y i n g  p r o c e s s .  They 
have the form:  

fo r  a ho r i z on t a l  a r r a n g e m e n t  of the hea ted  e l e m e n t  

Nu =0.0604 Ar ~ ira3/(1 - m)2] ~ Gu - ~  (h/D) ~ (8) 

fo r  a v e r t i c a l  a r r a n g e m e n t  of the tube 

Nu =-0.074 Ar ~ ira3~(1-- in)2] ~ Gu -~ (1--  r /R)  ~176 (9) 

Equat ion (9) is r e p r e s e n t e d  by cu rve  2 in F ig .  4. 
The dev ia t ion  of the t e s t  points  f r o m  the r e s u l t s  of 
ca l cu l a t i on  do not exceed  10.2% for  the h o r i z o n t a l  
a r r a n g e m e n t ,  and 15.2% for  the v e r t i c a l  a r r a n g e m e n t .  

Equat ions  (6)-(9) ,  which d e s c r i b e  hea t  t r a n s f e r  
be tween the s u r f a c e  and the m o i s t  f lu id ized  bed,  we re  
obta ined  us ing  a bed  p o r o s i t y  and a spec i f i c  weight  of 
p a r t i c l e s  fo r  both the m o i s t  and the d r y  bed.  It t u rned  
out that ,  to d e s c r i b e  the hea t  t r a n s f e r  be tween  the 
s u r f a c e  and the f lu id i zed  bed  dur ing  dry ing ,  we can  
u s e  the p o r o s i t y  of the d r y  bed and the spec i f i c  weight  
of the d r y  p a r t i c l e s .  

The va r i a t i on  of the p o r o s i t y  of the bed and the 
va r i a t ion  of the spec i f i c  weight  of the p a r t i c l e s  as  a 
function of bed  h u m i d i t y  p r o v e d  to have oppos i t e  e f fec ts  
on the heat  t r a n s f e r  in the bed, and to c o m p e n s a t e  one 
ano the r .  

Equat ions  of hea t  t r a n s f e r  be tween  the s u r f a c e  and a 
d r y  bed  of p a r t i c l e s  of s i l i c a  ge l  w e r e  ob ta ined  by the 
s a m e  me thod  as  was  u sed  fo r  the hea t  t r a n s f e r  equa-  
t ions  du r ing  the d r y i n g  p r o c e s s .  

F o r  a h o r i z o n t a l  h e a t e r  a r r a n g e m e n t  an equat ion 
was obta ined  in the fo rm 
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Nu =0.197 Ar ~ ira3~( 1-- m)2] ~ (h/D) ~ (10) 

The g r ea t e s t  devia t ion of the expe r imen ta l  points f rom 
those ca lcu la ted  accord ing  to (10) did not exceed 10g0. 

Fo r  a ve r t i ca l  tube the heat  t r a n s f e r  equation has 
the form 

r 1 F Nu ---- 0.226 Ar ~ L ~ ]  . (11) 

The m a x i m u m  deviat ion of the e x p e r i m e n t a l  points  
f rom those ca lcu la ted  accord ing  to (11) does not exceed 
15.6%. 

NOTATION 

a--heat transfer coefficient; Q-amount of heat transferred. At-- 
temperature difference; k-thermal conductivity of medium; d e -  
particle equivalent diameter; ~k-partiele shape factor; m-porosity 
of bed; F--area of tube heat transfer surface; yM--speeifie weight 
of material; yg-Specific weight of gas; v-kinematic viscosity of gas; 
h-height of horizontal tube above distril)utor; r-radius of position of 
axis of vertical tube; P~ D-radius and diameter of bed; To--tempera- 
ture of air leaving bed; *K; Tw--Wet bulb temperature; Nu = a 6 / k -  
Nusselt number; 6 = (2/3)~de~m/(1 - m)]-diameter of equivalent 
channels; Ar = g(~kde) s yM/V yg-Archimedes number; ~2 -relative 
humidity of gas leaving bed. 
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